Movie Review Summarization Using Supervised Learning and Graph-Based Ranking Algorithm
نویسندگان
چکیده
منابع مشابه
Graph-Based Marginal Ranking for Update Summarization
Update summarization is to summarize a document collection B given that the users have already read another document collection A, which has time stamp prior to that of B. An important and challenging issue in update summarization is that contents in B already covered by A should be excluded from the update summary. In this paper, we propose a graphbased regularization framework MarginRank for ...
متن کاملMovie Script Summarization as Graph-based Scene Extraction
In this paper we study the task of movie script summarization, which we argue could enhance script browsing, give readers a rough idea of the script’s plotline, and speed up reading time. We formalize the process of generating a shorter version of a screenplay as the task of finding an optimal chain of scenes. We develop a graph-based model that selects a chain by jointly optimizing its logical...
متن کاملExtractive Summarization Using Supervised and Semi-Supervised Learning
It is difficult to identify sentence importance from a single point of view. In this paper, we propose a learning-based approach to combine various sentence features. They are categorized as surface, content, relevance and event features. Surface features are related to extrinsic aspects of a sentence. Content features measure a sentence based on contentconveying words. Event features represent...
متن کاملSupervised Ranking in Open-Domain Text Summarization
The paper proposes and empirically motivates an integration of supervised learning with unsupervised learning to deal with human biases in summarization. In particular, we explore the use of probabilistic decision tree within the clustering framework to account for the variation as well as regularity in human created summaries. The corpus of human created extracts is created from a newspaper co...
متن کاملGraph-Based Semi-Supervised Learning
While labeled data is expensive to prepare, ever increasing amounts of unlabeled data is becoming widely available. In order to adapt to this phenomenon, several semi-supervised learning (SSL) algorithms, which learn from labeled as well as unlabeled data, have been developed. In a separate line of work, researchers have started to realize that graphs provide a natural way to represent data in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Intelligence and Neuroscience
سال: 2020
ISSN: 1687-5265,1687-5273
DOI: 10.1155/2020/7526580